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Passive acoustic and Argos satellite telemetry are common
methods for tracking marine species and are often used
similarly to quantify space use. However, data-driven
comparisons of these methods and their associated ecological
inferences are limited. To address this, we compared temporal
durations, spatial resolutions, financial costs and estimates of
occurrence and range distributions for each tracking approach
using nine juvenile green turtles (Chelonia mydas) in Bimini,
Bahamas. Tracking durations were similar, although acoustic
tracking provided higher spatiotemporal resolution than satellite
tracking. Occurrence distributions (95%) estimated from satellite
telemetry were 12 times larger than those from acoustic
telemetry, while satellite range distributions (95%) were 89 times
larger. While individuals generally remained within the extent
of the acoustic receiver array, gaps in coverage were identified.
These gaps, combined with the lower accuracy of satellite
telemetry, were likely drivers for the larger satellite distributions.
Costs differed between telemetry methods, with acoustic
telemetry being less expensive at larger sample sizes with a
previously established array. Our results suggest that acoustic
and satellite telemetry may not provide similar inferences of
individual space use. As such, we provide recommendations to
identify telemetry methods appropriate for specific study
objectives and provide discussion on the biases of each.

1. Background
Knowledge of how species use space through time can help
address key ecological questions by providing information on
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animal movement patterns [1], geographic range [2] and migration pathways [3], as well as connections
to ecologically important habitats [4,5]. Additionally, data on space use in association with environmental
drivers can provide insights into habitat and resource selection [6]. Combined, these data can be used to
forecast space use in relation to specific changes, such as climate change impacts, and can thereby aid
adaptive management practices [7,8]. This is particularly important within coastal nurseries and
foraging grounds, as these areas provide essential benefits to individuals (e.g. availability of food,
safety from predators) and therefore require targeted and effective management based on robust
ecological and spatial data [9,10]. Efforts to develop and improve methods to estimate an animal’s
space use have led to a myriad of innovative research techniques [11–14]. With several approaches
available, identifying the most appropriate method for a specific research question is necessary,
particularly as technology continues to advance.

Visual transect surveys [15], aerial surveys [16], mark-recapture studies [17], stable isotope analyses
[18] and biotelemetry tracking studies [19,20] are a few of the survey approaches frequently used to
determine species’ space use. Due to the logistical constraints associated with observing marine
species in situ, as well as recent technological developments, the use of biotelemetry devices has
grown rapidly in recent years, with acoustic and satellite telemetry emerging as common approaches
across many aquatic taxa [14,21]. Tracking data from these methods have successfully addressed high-
priority ecological questions and informed conservation and management efforts [22–24]. However,
while each of these approaches has unique benefits, they also have specific limitations, biases, and
assumptions that need to be considered when designing a study.

Passive acoustic telemetry monitors tagged individuals via an array of underwater receivers [25].
Internally or externally applied transmitters (depending on the target species) emit coded acoustic
signals that are recorded as the tagged individual passes within the detection range of a receiver. This
method is therefore constrained and biased by the design (i.e. density and extent) of the receiver array,
as well as receiver detection ranges and tag transmission power [25–28]. The exact locations of
individuals are typically unknown, although they can be identified within 1 m depending on the
receiver set-up [25]. Regardless, this method has been used successfully to track species that remain in
localized areas during one or more life stages, such as teleosts, crustaceans, elasmobranchs and
chelonids [21,29]. Receivers continuously monitor for nearby acoustic transmissions, enabling acoustic
telemetry to provide fine-scale data with high spatial (1–100 s of metres) and temporal (less than
1 min) resolutions [25,30]. Given that acoustic signals only transmit well through water, this method is
advantageous for species that spend considerable time underwater, but is less suited for seabirds or
species that exhibit basking or hauling-out behaviours [28].

Alternatively, traditional satellite telemetry (i.e. via platform transmitter terminals) uses external
transmitters that relay data to overhead satellites as the tagged individual surfaces, which is then used
to derive geographic locations of that individual [28]. It is therefore well-suited for species that are at
the ocean-air interface frequently, but less feasible for marine fishes or species that make long, deep
dives [31]. Location accuracy of satellite telemetry is highly dependent on the type of transmitter.
Fastloc-GPS transmitters quickly acquire and transmit GPS ephemeris data from which highly accurate
positions can be derived, but their higher costs can be a deterrent, with researchers often opting to
increase sample sizes by deploying more of the less-expensive Argos-only transmitters [32,33].
Accuracy of these more widely-used Argos transmitters is affected by the number of overhead
satellites present and the amount of time the transmitter has to communicate with the satellites
[34,35]. This often results in location errors greater than 1.5 km [30]. However, the main advantage of
satellite telemetry is that it is not spatially constrained to an array (like acoustic telemetry) and can
therefore track individuals undertaking large-scale movements or migrations [3,36], although it can
also be used to track individuals on a smaller scale (e.g. within foraging areas) [37].

Acoustic telemetry is often considered to be a low-cost tracking approach, particularly when
compared to satellite telemetry [25]. However, discussions of associated costs are generally limited to
the transmitters themselves, while other costs associated with telemetry, particularly the cost of data
retrieval, are often overlooked or difficult to quantify. Acoustic telemetry requires large initial costs to
install an array, after which regular maintenance and physical data retrieval are required [25,38,39].
While the costs associated with this can be quite large, the costs of the transmitters themselves are in
the order of hundreds of US dollars [38,39]. Argos and Fastloc-GPS satellite transmitters are
expensive, costing thousands of dollars, with additional fees to access the Argos network to retrieve
the associated data [39,40]. Fastloc-GPS transmitters can also be used as data loggers, which store data
on-board the device, but the tag must be retrieved from the individual, which has additional costs
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[35]. Detailed assessments of the full financial costs associated with each telemetry method are needed to
compare pertinent trade-offs.

Despite their differences, acoustic and satellite telemetry are both frequently used to quantify and
interpret the space use of individuals and populations within the marine environment [41–43].
However, data-driven comparisons that assess whether these two common biotelemetry methods can
be used to make similar ecological inferences are lacking. To our knowledge, only three studies have
yet attempted to quantitatively compare space use metrics derived from acoustic and satellite
telemetry [39,44,45]. All three studies assessed Fastloc-GPS satellite telemetry and all reached varying
conclusions regarding the applicability of each approach. As such, it is still unclear whether acoustic
and satellite telemetry provide similar estimates of individual occurrence and range distributions.
Furthermore, there have been no studies to date that have assessed acoustic telemetry with the more
ubiquitous Argos satellite telemetry, warranting a need for comparisons between these two commonly
used methods. Findings from these comparisons can be used to inform decisions on the most
appropriate method to use when accounting for experimental design and research objectives, and can
help managers properly interpret findings from telemetry studies with considerations for biases and
limitations [44].

To address this gap in knowledge and systematically compare space use estimates between telemetry
methods, we simultaneously tracked nine juvenile green turtles (Chelonia mydas) with both passive
acoustic and Argos satellite telemetry within a foraging area in Bimini, Bahamas. Multiple aspects of
both tracking methods, including the temporal durations and resolution, spatial extent and resolution
and financial costs associated with each tracking method were compared. Our objective was to assess
whether similar inferences can be made from both tracking methods when taking into consideration
all of the inherent limitations, biases and assumptions that each encompasses. To do so, we compared
individual occurrence and range distributions to (1) evaluate how each telemetry method affects the
interpretation of space use of foraging turtles in Bimini, and (2) assess the applicability of each
telemetry method for projects aiming to quantify current and future space use of marine species.
2. Methods
2.1. Study site
This study took place in Bimini, Bahamas (figure 1), located approximately 86 km off the coast of Miami,
Florida, USA (FL) in the western Great Bahamas Bank (25°440 N, 79°160 W). Bimini consists of two main
islands (North and South Bimini) situated in a triangular shape with a semi-enclosed lagoon [46]. Benthic
habitat surrounding the islands includes fringing coral reefs, mangroves, shallow seagrass and
unconsolidated sand habitat [46–48]. Bimini’s waters are an important nursery for an abundance of
species, specifically juvenile sharks [49,50], and are a prominent foraging area for juvenile green
turtles [51,52].

2.2. Turtle capture
Vessel-based haphazard, unmarked, non-linear transect (HUNT) surveys [53] were conducted in May
2017 to locate juvenile green turtles. Turtles were hand-captured via the ‘rodeo method’ [51,54] and
brought on board for standard work-up. Morphometric measurements were taken including standard
and curved carapace length and width, plastron length, head width and tail length (all ± 0.1 cm), as
per Gillis et al. [42]. Body weight (± 0.1 kg) was also taken with a hanging balance (PESOLA AG,
PHS100). If not present, passive integrated transponders (PIT tags; Biomark GPT12) were inserted
sub-dermally in one front flipper and Inconel flipper tags (National Band and Tag Company, Style
681) were applied to the trailing edge of both front flippers for individual identification. Turtles were
equipped with both acoustic and satellite transmitters (see subsequent sections) and were released
within 200 m of their initial capture site.

2.3. Acoustic tracking
Turtles were equipped with V13 acoustic transmitters (69 kHz, 50–130 s delay interval, 513 d battery life,
Innovasea [previously Vemco], Bedford, Nova Scotia, Canada). Transmitters were affixed to the dorsal
posterior marginal scutes with electrician tie-wraps fitted through 3 mm diameter drilled holes and
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Figure 1. Study area map of Bimini, Bahamas with benthic habitat (white = unclassified) and locations of passive acoustic receivers
(n = 63) shown. Based on range tests, receivers in reef or dense seagrass habitat were assigned detection ranges of 185 m, while
receivers in sandy habitat or the shallow lagoon were assigned detection ranges of 350 m. Benthic habitat data were obtained from
the Allen Coral Atlas 2020, and bathometric isobars of 10 m and 200 m are shown.
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secured with epoxy putty (Sonic-Weld®) [55]. Acoustic detections were monitored throughout Bimini
and nearby islands by an array of 63 VR2W acoustic receivers (figure 1) maintained by the Bimini
Biological Field Station Foundation. Receivers were originally placed to capture movements of sharks
and rays around the islands, within the shallow lagoon, and particularly within seagrass beds to the
south of Bimini (figure 1). Individuals in this study were monitored from May 2017 until no more
detections were logged. Receiver detection ranges were defined as the distance at which 50% of
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expected acoustic signals were detected [27,56] and were calculated by a binomial logistic regression from
data provided by range tests. Briefly, range tests were conducted at two representative locations between
August 2015 and June 2019, one in deeper water (12 m) on the edge of a coral reef, and one in shallower
water (2–3 m) in an open sand habitat [47,50]. Four test transmitters placed 1 m above the seafloor at
increasing distances (0, 250, 500, 750 m) from a receiver at each test site were used to estimate receiver
detection ranges, found to be approximately 185 m in reef habitat and 350 m in sandy habitat.

Acoustic detection data were filtered to remove possible false detections, including double detections,
detections prior to transmitter deployment, and a single detection that occurred with no other detections
within one hour prior to or after it [47,50,57]. Detections within the first 24 h following an individual’s
release were discarded to allow for acclimation after capture [55,58]. Additionally, detections made
between 04 May and 06 May 2017 (57 h total) were removed due to a disruption in coverage of one-
third of the receivers while being maintained. Abacus plots were created for each individual turtle
with the VTrack package [59] in R [60] to visually inspect detections over time and to identify when
transmitters were possibly dislodged or shed [61,62].

To account for the unknown true location of an individual within the detection range of a receiver
[25,28], we reassigned detection locations to fall randomly within the receiver’s detection range as
weighted by the detection probability kernel per habitat [41,63]. Receivers in reef or dense seagrass
habitat were assigned a 185 m detection range, while those in sandy habitat or within the shallow
lagoon were assigned a 350 m range, based on range tests. This provided a more realistic
representation of the natural variance that would occur in turtle locations, as opposed to all locations
occurring at the coordinates of the receiver. Any relocated detections placed over land were
reassigned again until no points over land remained. Reassigned locations were used to calculate
centres of activity (COAs) at 30 min time steps following the mean-algorithm position method [64]
with the VTrack package in R [59,65].

2.4. Satellite tracking
SPOT6-287 (Argos) satellite platform transmitter terminals (PTTs; approx. 543 d battery life, Wildlife
Computers, Redmond, Washington, USA) were also attached to each turtle concurrently with the
acoustic transmitters following protocols by Seney et al. [66] using Power-Fast/Sonic-Weld epoxy
putty [66]. These transmitters use the Argos satellite network to relay data to satellites from which
geographic locations are derived via the Doppler shift [67]. Data were collected through December
2017 and downloaded from the Wildlife Computers data portal. The Argos system provides location
accuracy for each observation as location classes (LCs), which have associated error estimates of
<250 m for LC 3, 250–500 m for LC 2, 500–1500 m for LC 1, and greater than 1500 m for LC 0
[68]. Argos does not provide error estimates for LC A and B but experimental measures of accuracy
have shown LC A to be variable and LC B to have the greatest error of the aforementioned classes
[30,31,34,69]. LC Z are considered invalid locations [68] and were removed for this study’s analysis, as
well as locations recorded within the first 24 h of tag deployment to allow for an acclimation period.
Duplicate transmissions, as well as implausible locations at the beginning of individual tracks, were
removed.

2.5. Space use estimation
To comprehensively assess the tracking method’s influence on the interpretation of individual space use
and movement, we estimated both occurrence distributions and range distributions, collectively referred
to here as ‘utilization distributions’ (UDs). The occurrence distribution (OD) quantifies the uncertainty of
an individual’s movement path and can essentially provide a measure of how well each telemetry
method estimates the movement of the individual [70,71]. The range distribution (RD) quantifies the
predicted future space use and is synonymous with the traditional definition of an individual’s home
range [70–72]. Both ODs and RDs provide important yet distinct information on individual space use
[71]. Data from each tracking approach were analysed via commonly used methods and in a manner
consistent with the structure of the data. As such, the measures of occurrence and range distributions
between telemetry methods do not provide all-else-equal comparisons to each other or to any
‘accurate’ measure of space use. Rather, our study uses the analytical approaches from other real-
world studies to provide a comparison of how these commonly used methods may produce differing
or similar interpretations of space use while incorporating their inherent assumptions and limitations,
such as array design, resolution of data, and more.
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2.5.1. Occurrence distributions

We estimated individual 95% and 50% occurrence distributions (ODs) using dynamic Brownian Bridge
Movement Models (dBBMMs) with the move package in R [73,74]. The dBBMM, an expansion of the
Brownian Bridge Movement Model [75,76], works well for data sets of low temporal frequency [77],
and provides a measure of the certainty of the movement pathway within the observed study period
[70]. Additionally, it allows for a dynamic, rather than constant, Brownian variance of motion ðs2

mÞ
along the track in user-defined intervals, which allows the model to capture changes in behaviour
throughout the track [78]. This interval, known as the sliding window, was set to the number of
locations equivalent to approximately 24 h in order to capture subtle changes in behaviour as well
as diel behaviours [78].

COA positions were used in the dBBMMs for the acoustic telemetry ODs. For the satellite data, a
continuous-time correlated random walk was fit within a state-space model (SSM) using the
aniMotum package in R [79] to account for location error of the raw data at the observed time
interval. This model handles irregular sampling frequencies well and uses semi-major and -minor axis
lengths, as well as ellipse orientation of Kalman filtered errors, to estimate ‘true’ locations quickly and
reliably [80]. A conservative speed filter of 2 m s−1 was applied, and filters for angles and distances of
outlier locations were set to 15°–25° and 1500–3000 m, respectively [37,80,81]. Fitted locations that
overlapped with land were removed prior to any further analysis. Final fitted locations from the SSM
were then used for satellite telemetry dBBMM ODs.

Since the acoustic COAs were calculated at 30-min time steps, the dBBMM window for the acoustic
ODs was set to 49 observations (equivalent to approximately 24 h), with margins of 15 observations. ODs
were not calculated for individuals with fewer than 49 COAs. For the satellite telemetry data, the median
time step between transmissions was approximately 2 h, so the dBBMM window was set to 13
observations, with margins of 3 observations. If tracks contained gaps in data longer than 24 h, any
variances associated with that section of the track were excluded from the dBBMM calculation [73].
Location errors for the acoustic telemetry data (COAs) were estimated to be the mean distance from
the receiver to the reassigned detection locations for all detections used to calculate a particular COA.
For satellite telemetry data, the location errors were taken to be the standard errors (SE) provided by
the SSM output from the aniMotum R package, which propagated location uncertainty over both
stages of the analysis. The package provides the SE in both the north-south and east-west directions,
of which the smaller of the two errors was selected as the input for the dBBMM. Any location with a
SE over 3 km was discarded.

2.5.2. Range distributions

We also calculated 95% and 50% range distributions (RDs) with optimally weighted autocorrelated
kernel density estimators (AKDE) using the ctmm R package [82] to estimate predicted space use per
individual turtle [83]. Acoustic COA positions and raw satellite positions were first assessed for
outliers based on a speed filter of 2 m s−1. The ctmm package was then used to fit several continuous
time movement models (CTMM) to the data of each individual to estimate autocorrelation and
positions, where the model with the lowest Akaike information criterion (AIC) score was selected per
individual [82]. To produce results that are reflective of and consistent with previous published
literature, particularly acoustic studies [62,84], location errors were not incorporated into the CTMM
and resulting RD estimates. Weighted AKDEs were estimated to reduce bias from irregular sampling
frequencies and locations over land were not removed, but land boundaries were incorporated into
the AKDE function.

2.6. Space use comparisons
The dBBMMs and AKDEs were used to first estimate individual acoustic and satellite telemetry
occurrence and range distributions (UDs; 95% and 50%), respectively, using all available data from
each tracking method (referred to hereafter as ‘full temporal duration UDs’). Any portions of the UDs
that fell over land were removed. The areas of the 95% and 50% UDs were calculated and compared
between tracking methods with a Bayesian t-test with the BEST package in R [85], which provides a
probability that the difference in space use estimates by telemetry method is greater than 0. The
Bayesian model assumed a t-distribution to account for outliers and used an uninformative, broad
prior [85]. Boxplots were used to visualize differences in mean UD size (utilizing R package ggbreak
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[86]). To assess the degree of agreement between each individual’s acoustic-derived and satellite-derived
UDs, we calculated the Bhattacharyya’s Affinity (BA) overlap index for both 95% and 50% UDs, with the
resulting value ranging from 0 (no overlap) to 1 (identical UDs) [87]. UDs were then estimated for only
the dates when both acoustic and satellite transmitters were active to allow for comparisons across the
same temporal period (referred to hereafter as ‘matching temporal duration UDs’). For the satellite
UDs, any transmissions that occurred during the 57 h at the beginning of May when acoustic receivers
experienced disruption were removed to accurately match the temporal duration of the acoustic UDs.
Additionally, to assess how longer tracking durations may affect UD estimates, we compared the areas
and overlap indices of matching and full temporal duration UDs for each individual with a Bayesian
estimation, again using uninformative, broad priors [85]. Tracking durations of acoustic and satellite
telemetry were compared with a Bayesian estimation as well.

Since passive acoustic telemetry is spatially limited by the receiver array, while satellite telemetry is
not, we assessed the degree to which the individuals in this study used (or may use) space beyond the
detection range of the passive acoustic array. For this, we calculated the overlap of the full temporal
duration satellite 95% and 50% ODs and RDs and the detection range of the array as the proportion
of the UD falling outside the array range. This percentage was calculated based on both the 50%
(standard detection range definition) and 1% (maximum detection range) detection probability range
of the receivers. Based on range testing, this equated to approximately 185 m and 520 m, respectively,
for reef and seagrass receivers and 350 m and 1100 m, respectively, for sandy habitat receivers (see
§2.3). Additionally, to further investigate whether individuals were using space beyond the boundaries
of the array, as opposed to potential gaps in receiver coverage within the extent of the array, we
calculated the minimum convex polygon (MCP) of the receivers and then calculated the proportion of
the full temporal duration satellite UDs falling outside the receiver MCP [88]. To further compare
acoustic and satellite telemetry, an exploratory analysis was conducted to compare ODs between
methods when only satellite locations from within the 1% acoustic array detection range were used
(see electronic supplementary material, analysis).
2.7. Cost analysis
The approximate costs associated with projects using acoustic and satellite telemetry were compared
across several scenarios, which considered two different tracking durations (6 months and 12 months),
four sample sizes (1, 5, 10 and 20 tracked individuals), and acoustic (V13) and satellite (Argos)
transmitters. While not used in our study, we also included the costs associated with Argos-linked
Fastloc-GPS, as we recognize that the use of these transmitters in tracking studies is growing [35,89].
Expenses related to capturing turtles for transmitter application, such as boat fuel, personnel time and
travel/lodging at a field site, were not included in the cost analysis, since these expenses were similar
regardless of whether satellite or acoustic transmitters were being applied. For all scenarios, we
included the cost of the transmitter, as well as the costs of materials needed for transmitter
application, such as epoxy or hardware. Battery life was similar between the satellite and acoustic
transmitters used in this study (approx. 543 and 513 d, respectively), and as such were not taken into
consideration, although this could impact final costs of projects depending on the sizes of tags
required. For satellite telemetry scenarios, the tariff required for continued use of the Argos satellites
was included. Acoustic telemetry scenarios included estimated costs associated with maintenance and
data retrieval of a 40-receiver array, including personnel costs (see electronic supplementary material,
methods, table S1). Maintenance costs included periodic receiver replacement costs (annual
replacement of 10% of receivers) and annual receiver battery costs. Additionally, we estimated the
costs associated with installing a 40-receiver passive array. Detailed information regarding how we
define cost estimates is included in electronic supplementary material, methods.
3. Results
Nine juvenile green turtles (mean ± s.d.; SCL = 45.2 ± 7.1 cm; mass = 12.1 ± 6.8 kg) were tagged
simultaneously with both acoustic and satellite transmitters in May 2017 (table 1). Seven of the
individuals were tracked successfully with both technologies, while Turtle B was only tracked
successfully with satellite telemetry and Turtle F with acoustic telemetry.



Table 1. Acoustic and satellite telemetry tracking information for juvenile green turtles tracked in Bimini in 2017. SCL (cm) is
the standard straight carapace length. Tracking duration (d) is defined as 24 h post-release until the individual’s last detection/
transmission; acoustic tracking durations exclude 57 h span between 05/04 and 05/06 when 30% of receivers were inoperable.
Processed locations refer to centre of activity (COA) locations for acoustic telemetry and post-state-space model (SSM) locations
(listed first) and post-continuous time movement model (CTMM) locations (listed second) for satellite telemetry.

ID SCL (cm) mass (kg) release date

tracking duration (d)
raw detections/
locations

processed locations/
day

acoustic satellite acoustic satellite acoustic satellite

A 56.2 24.8 5/2/17 80 74 3529 344 10 3/3

B 40.2 9.4 5/3/17 NA 234 NA 1651 NA 1/5

C 49.6 16.1 5/2/17 237 53 6365 90 6 1/1

D 38.9 5.6 5/3/17 102 100 3723 649 6 6/5

E 37.6 5.7 5/3/17 42 130 231 1000 1 3/3

F 41.9 6.5 5/2/17 81 NA 2854 NA 9 NA

G 38.7 7.5 5/2/17 68 152 3139 1178 14 5/6

H 51.0 14.5 5/3/17 8 20 46 129 2 5/5

I 52.4 18.8 5/3/17 81 186 385 1253 1 3/5

�x 45.2 12.1 87 119 2534 787 6 3/4

SD 7.1 6.8 67 71 2193 573 5 2/2
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3.1. Acoustic and satellite tracking
Acoustic telemetry tracking durations (n = 8) were on average 87 d (range: 8–237 d), with 20 272 total
detections logged across 19 unique receiver stations throughout the study area (table 1). Most of the
detections (73%) were made at a single receiver station located in an area previously identified as
having high densities of turtle grass and green algae [51]. After using the reassigned locations to
estimate COAs (figure 2), individuals had a mean of 598 acoustic locations each, with an average of 6
locations per day (table 1). The mean location error radius of COAs was estimated to be 216 ± 118 m.

Individuals successfully tracked with satellite telemetry (n = 8) transmitted locations on average for
119 d (range: 20–234 d; table 1). There were 6294 raw satellite transmissions after initial filtering, with
6% of locations being assigned to LC 3 and 2 (Argos estimated location error: <250–500 m). After
fitting the SSM to the satellite data to be used with the dBBMMs (figure 2), 45% of the estimated,
corrected locations intersected with land and were subsequently removed. Additionally, 99 locations
with SEs exceeding 3 km were removed from further analyses, resulting in an average of 373 satellite
locations per individual (3 per day) with a mean location SE of 436 ± 452 m (table 1). After fitting
individual CTMM models (see electronic supplementary material, tables and figures, table S2) to the
satellite data to be used for AKDEs, the predicted tracks (figure 2) provided an average of 4 locations
per day per individual. For each individual, there were differences between the tracking durations of
the two methods; however, the mean difference between methods was 35 days (95% credible interval:
−54.7–120).

3.2. Occurrence distributions
Turtles E and H had too few COA positions (n = 36 and n = 13, respectively) to calculate acoustic ODs via
dBBMM and thus, similarly to Turtles B and F, were excluded from comparisons between acoustic and
satellite ODs. For the remaining five turtles, full temporal duration acoustic ODs were smaller than
satellite ODs for all individuals except Turtle C (figure 3). On average, satellite 95% ODs (mean ± SE;
49.02 ± 24.47 km2) were approximately 11.5 times larger (range: 0.3–22) and satellite 50% ODs (3.48 ±
1.83 km2) were 10 times larger (range: 0.3–25) than the respective acoustic 95% ODs (3.44 ± 0.84 km2)
and 50% ODs (0.30 ± 0.03 km2) (figure 4a). There was an 89.3% probability that satellite 95% ODs
were larger than acoustic 95% ODs, and an 88.4% probability that satellite 50% ODs were larger than
acoustic ODs. The average BA overlap index comparing individual 95% acoustic and satellite ODs
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Figure 2. Post-continuous time movement model (CTMM) satellite tracks (dark grey lines), post-state-space model (SSM) satellite
tracks (blue lines) and acoustic detection centres of activity (COAs; red circles) for nine juvenile green turtles tracked in Bimini,
Bahamas in 2017.
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was 0.53, signifying a moderate level of agreement between ODs (table 2). The 50% ODs showed a lower
degree of overlap, with an average BA index of only 0.16. When comparing ODs derived from only the
period of time when both transmitters were active, the same trends were observed (see electronic
supplementary material, tables and figures, figures S4, S5a, table S3).

There were no considerable differences in the sizes of the individuals’ full and matching temporal
duration ODs (see electronic supplementary material, tables and figures, figures S6, S7). Turtles A, C,
and D were tracked for two to 184 days longer with acoustic telemetry than satellite telemetry and
there was only a 52.5% and 52.7% probability that their acoustic 95% and 50% full temporal duration
ODs, respectively, were larger than the matching temporal duration ODs (see electronic
supplementary material, tables and figures, figure S6). Turtles E, G, H, and I were tracked for 12 to
104 days longer with satellite telemetry than with acoustic telemetry and similarly did not show
substantial differences in OD estimates when including all tracking days (see electronic supplementary
material, tables and figures, figure S7). Full temporal duration 95% and 50% ODs had only 47.8% and
36.2% probabilities, respectively, of being greater than the matching temporal duration ODs. The BA
overlap indices comparing satellite and acoustic full temporal duration 95% and 50% ODs had a
61.8% and 64.4% probability, respectively, of being greater than the matching temporal duration
overlap indices, indicating that increased tracking durations did not notably increase agreement of OD
estimates between tracking methods.
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All individuals in this study had occurrence distributions that extended beyond detection ranges of
the acoustic receivers. At a 50% detection probability, the total coverage of the array was 13.09 km2 and,
on average, 90% (range: 66–99%) of individual full temporal duration satellite 95% ODs fell outside the
detection range of the receivers (figure 5a). Satellite 50% ODs were similar, with a mean of 85% (range:
56–100%) of the ODs occurring outside of the detection range (see electronic supplementary material,
tables and figures, figure S8a). At the maximum possible detection range (1% detection probability),
the extent of the array increased to 95.09 km2. Only one individual (Turtle C) had a satellite 95% OD
that fell completely within the detection range of the receivers. On average, 46% (range: 0–91%) and
27% (range: 0 –57%) of satellite 95% and 50% ODs, respectively, still fell outside the detection ranges
(figure 5b; see electronic supplementary material, tables and figures, figure S8b). With the exception of



Table 2. Overlap index values comparing full temporal duration acoustic and satellite utilization distributions. Bhattacharyya’s
Affinity index values range from 0 (no overlap) to 1 (identical).

ID

occurrence distributions range distributions

50% 95% 50% 95%

A 0.13 0.47 0.72 0.64

C 0.10 0.64 0.01 0.01

D 0.18 0.54 0.02 0.03

G 0.28 0.69 0.14 0.07

I 0.14 0.33 0.47 0.71

�x 0.16 0.53 0.27 0.29

SD 0.07 0.14 0.14 0.16
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Turtle E, turtles were likely using space within gaps in receiver coverage as opposed to using areas
beyond the extent of the array. On average, only 11% of the full temporal duration satellite 95% ODs
extended beyond of the array’s MCP, with Turtle E being the only individual to have a substantial
amount of estimated movement (65% of satellite OD) outside the array bounds (figure 5c). Every
individuals’ 50% ODs fell within the array MCP (see electronic supplementary material, tables and
figures, figure S8c). Restricting satellite data to only those locations that occurred within the 1%
detection range of the receiver array did not significantly impact OD estimates and further supports
the findings of the main study (see electronic supplementary material, analysis, figures S1, S2, S3).
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3.3. Range distributions
Similar to the occurrence distributions, Turtle E and H did not have enough acoustic data to calculate
AKDEs, and therefore only Turtles A, C, D, G, and I were included in comparisons of range
distributions (RDs). It should be noted that Turtle I had a low acoustic effective sample size and, as
such, the acoustic home range of this individual had large confidence intervals and should be
interpreted with care. The full temporal duration satellite RDs were larger than acoustic RDs (figure 6),
with satellite 95% RDs (198.82 ± 68.99 km2) being on average 89 times larger (range: 1–305) than acoustic
95% RDs (84.70 ± 52.21 km2), with an 81.5% probability of being larger (figure 4b). Satellite 50% RDs
(26.70 ± 10.02 km2) were on average 84 times larger (range: 0.9–315) than their acoustic counterparts
(17.61 ± 11.66 km2), but with a 67.3% probability of being larger (figure 4b). BA overlap indices
comparing full temporal duration acoustic and satellite RDs were low (table 2), with an average overlap
of 0.29 for 95% RDs and 0.27 for 50% RDs. Similar trends were observed for matching temporal
duration RDs (see electronic supplementary material, tables and figures, figures S5b, S9, table S3).

Of the turtles that were tracked longer with acoustic telemetry, Turtle A had a full temporal duration
acoustic RD that was larger than its matching temporal duration acoustic RD; however, Turtles C and D
showed no appreciable differences in RD estimates (see electronic supplementary material, tables and
figures, figure S10). Overall, using the full acoustic tracking duration produced 95% RDs that had a
69.7% probability of being larger and 50% RDs that had a 68.9% probability of being larger than those
estimated from the matching temporal duration data. Small differences were seen in satellite RD
estimations for those individuals tracked longer with satellite telemetry, except Turtle H, whose full
temporal duration RD was 13 times larger than its matching temporal duration RD (see electronic
supplementary material, tables and figures, figure S11). Overall, full temporal duration satellite 95%
RDs had only a 52.5% probability (and 50% RDs had a 47.8% probability) of being larger than
satellite RDs derived from matching temporal duration data.

Similar to ODs, all individuals had full temporal duration satellite RDs that extended beyond the
detection range of individual acoustic receivers. When considering a 50% detection probability of
receivers, an average of 95% (range: 89–99%) of 95% RDs and 90% (range: 73–97%) of 50% RDs fell
outside of the detection range of the receivers (figure 5d; see electronic supplementary material, tables
and figures, figure S8d ). At the maximum detection range of 1% probability, 68% (range: 38–95%) of
95% RDs and 37% (range: 2–55%) of 50% RDs fell outside the receiver detection range (figure 5e; see
electronic supplementary material, tables and figures, figure S8e). While a large portion of predicted
space use fell outside the individual receiver ranges, only 33% (range: 1–78%) and 5% (range: 0–25%)
of 95% and 50% satellite RDs, respectively, fell outside of the MCP of the acoustic array (figure 5f; see
electronic supplementary material, tables and figures, figure S8f ).



Table 3. Total estimated costs associated with satellite and acoustic telemetry across varying temporal and sample size scenarios.
Monetary amounts are USD. Values include all associated costs, including transmitters, materials, and labour costs. Acoustic
telemetry values include maintenance and data retrieval costs.

duration 6 months 12 months

sample size 1 5 10 20 1 5 10 20

acoustic with

existing

array

$11,325 $13,425 $16,050 $21,700 $21,725 $24,225 $26,850 $32,100

acoustic with

array

installation

$101,525 $103,625 $106,250 $111,900 $111,925 $114,425 $101,525 $122,300

satellite

(Argos-

only)

$2,303 $11,515 $23,030 $46,060 $2,681 $13,405 $26,810 $53,620

satellite

(Fastloc-

GPS)

$5,403 $27,015 $54,030 $108,060 $5,781 $28,905 $57,810 $115,620

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.11:231152
13

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 J

an
ua

ry
 2

02
4 
3.4. Cost analysis
The estimated costs associated with each tracking technology varied depending on the scenario being
considered (table 3). At small sample sizes (n = 1–5), the costs of individual satellite transmitters and
Argos service were lower than the costs of acoustic array maintenance and data retrieval when
considering an existing receiver array. Fees associated with accessing Argos satellite telemetry data
were $378 per 6 months, compared to $10 800 over the same period for acoustic array maintenance
and data retrieval. As such, tracking a single individual using acoustic telemetry was 5 and 2 times
more expensive than tracking with Argos-only and Fastloc-GPS, respectively, in the short-term and 8
and 4 times more expensive, respectively, in the long-term. When tracking up to five individuals, costs
became more comparable between Argos-only and acoustic tracking, with acoustic telemetry being 1.2
(at 6-months) and 1.8 (at 12-months) times more expensive than satellite tracking with Argos-only
tags. Fastloc-GPS, however, was considerably more expensive than acoustic telemetry at samples sizes
of five individuals or more.

As the number of tracked individuals increased, acoustic telemetry became the least expensive option
when considering the use of an existing array. At a sample size of 10 individuals, Argos-only and Fastloc
satellite telemetry were 1.4 and 3.4 times more expensive than acoustic telemetry, respectively, for a
6-month tracking period. However, for 12 months, the costs associated with Argos-only satellite
telemetry and acoustic telemetry were equivalent. When increasing the sample size to 20 individuals,
Argos-only and Fastloc satellite tracking were 2 and 5 times more expensive than acoustic telemetry,
respectively, over a 6-month period. For a 12-month project, the differences were less, with Argos-only
and Fastloc being 1.7 and 3.6 times more expensive than acoustic. Acoustic array maintenance and
data retrieval costs remain relatively constant regardless of the number of individuals being tracked,
so the lower costs of acoustic transmitters outweighed the more expensive satellite transmitters for
projects with larger sample sizes (greater than 10). Installation of a 40-receiver acoustic array,
including labour but not including array design and range testing, was estimated to be approximately
$90 000 and added considerable expenses under all scenarios (table 3).
4. Discussion
The results from our study showed that passive acoustic and Argos satellite telemetry did not provide the
same inferences of juvenile marine turtle space use within our study site. These findings are generally
supported by those of Dwyer et al. [44], which found differing space use estimates for dual-tagged
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crocodiles, but oppose the findings of Babcock et al. [45] and Zeh et al. [39], which found similar space use
estimates for green turtles and dugongs, respectively [39,44,45]. In the present study, satellite telemetry
produced larger occurrence and range distribution estimates than acoustic telemetry. As such, treating
our results derived from acoustic and satellite telemetry similarly may lead to misinterpretation of
turtle movement patterns, and suggests that these methods should not be used interchangeably to
address the same ecological questions. Researchers should consider the research objectives, the
spatiotemporal structure of the data obtained, biases and limitations (such as acoustic array design),
and the associated financial costs of each method prior to selecting a telemetry method or interpreting
data from either method.

It is important to compare and consider the temporal scale of data provided by each telemetry
method, as increased tracking durations have the potential to reveal additional movement pathways
and usage areas, impacting interpretations of space use [71,90,91]. Similar to the findings of Babcock
et al. [45], both telemetry approaches provided comparable overall tracking durations in this study
[45]. Our satellite tracking durations (20 to 234 d) were equivalent to those reported in recent studies
tracking juvenile green turtles [92,93]; however, the acoustic tracking durations (8 to 237 d) were
considerably shorter than those in the current literature, which have tracked individuals for over a
year and even up to 2.5 years [94,95]. Range distributions in particular are heavily influenced by the
number of times an individual crosses its range (i.e. effective sample size) [71,96] and space use
estimates will generally increase with tracking duration until reaching an asymptote, when the data
reflect the full spatial extent used by the individual [97]. Prior marine turtle studies have found home
range estimates to stabilize after one to six months of tracking [55,94,98]. The average durations for
both acoustic and satellite telemetry in the present study fell within this range and, indeed, there were
no meaningful differences in space use for the matching and full temporal duration UDs. This
suggests that both telemetry methods provided sufficient tracking durations for space use stabilization
of the individuals within this study. While tracking durations were similar for our individuals,
transmitter retention should be considered in studies with other species. Satellite transmitters must be
attached externally to all taxa for signals to be transmitted, but for most marine species (apart from
marine turtles, currently), acoustic transmitters can be surgically implanted, leading to longer
retention times [19,99,100].

In addition to the overall temporal duration, it is important to consider the temporal resolution
provided by each telemetry method. Because OD estimators interpolate the individual’s movements
between locations, increased relocation frequency will improve estimates of the accuracy of predicted
tracks [71]. Higher relocation frequency can also improve the accuracy of state-space models used to
account for location error of satellite telemetry [101]. While the tracking durations were similar
between methods, acoustic telemetry provided four times as many raw daily relocations per
individual at a much greater frequency. Babcock et al. [45] and Dwyer et al. [44] reported the same
trend from their dual-tagged green turtles and crocodiles, respectively [44,45]. Satellite locations are
only transmitted when an individual surfaces, while acoustic signals are transmitted to nearby
receivers based on a user-defined interval (in our study, 50–130 s). For species that spend most of
their time submerged, such as marine turtles [102,103], this results in a higher frequency of acoustic
detections, suggesting that acoustic telemetry may allow for a more accurate depiction of space use
and increased certainty of the movement path [45,71].

Acoustic telemetry also provided data at a finer spatial resolution and accuracy than satellite
telemetry. Based on receiver detection ranges, the average 50% detection range at our study site was
approximately 266 m, and we estimated an average location error radius for COAs to be 216 m. It
should be noted, however, that location errors are difficult to assess with certainty due to fluctuating
detection probabilities [26,27]. Only 12% of the raw satellite locations collected in this study were
classified as LC 0–3. While published errors associated with these classes range from less than 250 m
to greater than 1500 m [68], studies have found errors to be greater than these Argos-provided
estimates [30,31,104]. This low spatial accuracy associated with Argos satellite telemetry can lead to an
overestimation of predicted movement patterns and home range [35]. To compensate for this, we
applied an SSM to the satellite tracking data to account for the location errors when estimating
occurrence distributions. While similar methods are being developed to incorporate location errors
into CTMM models as well [105], the range distributions presented herein do not account for location
error so as to remain comparative to the current literature. This inclusion and non-inclusion of
location error estimates may in part explain why larger differences were seen between acoustic and
satellite RDs than between acoustic and satellite ODs. As the use of Fastloc-GPS transmitters increases,
improved satellite tracking data will become more available without the need for extensive post-
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processing of data [31,35,104]. With average location errors of less than 40 m in stationary tests, it can
provide a higher spatial resolution than typical acoustic telemetry [30,33–35].

Interpretations of turtles’ individual space use throughout Bimini differed between acoustic and satellite
telemetry. Although there was high variability among individuals, with some showing small differences in
UD estimates between tracking methods, there was still greater than 81% probability of satellite 95% UDs
being larger in size than acoustic UDs. Low BA overlap indices between satellite and acoustic UDs were
driven by these size differences, as UDs generally overlapped geographically. The large errors associated
with satellite telemetry contributed to the size differences seen in both ODs and RDs [41,91]. The smaller
acoustic occurrence distributions observed were also likely due in part to the increased temporal
resolution of the acoustic data, suggesting that acoustic telemetry was able to identify movement patterns
with fairly high accuracy [71,76]. Smaller acoustic range distributions are likely driven by gaps in
acoustic receiver coverage within the array in addition to large satellite telemetry errors.

For all but one turtle, the full temporal duration satellite UDs mostly fell within the MCP of the
acoustic array, indicating that the differences in UD estimates between methods were not caused by
individuals traveling outside the array and using space beyond its boundaries. Despite not being
originally designed to capture the movements of marine turtles, the extent of the acoustic array
appears to adequately cover the range of the individuals, indicating that the low density of the array
and resulting gaps in coverage contributed to the differences in acoustic and satellite UD estimates
[106]. Even in high density arrays, several factors such as benthic substrate, vegetation, salinity, wave
action, underwater noise, and more can affect detection probabilities and receiver ranges, sometimes
rapidly and unexpectedly [26,27,56]. Any movement or space use within gaps, whether caused by low
receiver density or variable detection ranges, will go undetected by acoustic telemetry while still being
captured by satellite telemetry, a phenomenon also observed in an exploratory study with a Silvertip
shark in the Chagos Islands [19]. Theoretically, since the acoustic array in this study covers most of
the ranges of the individuals, acoustic RD estimates should be fairly accurate [106]. However, with
such gaps in coverage, it is possible that a portion of the home range is underrepresented. Increasing
the density of the array would improve the acoustic space use estimates, potentially leading to smaller
differences in the predicted space between telemetry methods. Therefore, a combination of array
design and spatiotemporal resolution of the data are likely attributing to the differences seen between
acoustic and satellite telemetry. Fluctuating detection ranges as well as the design of an acoustic array
introduce inherent bias to space use estimates and careful consideration should be given to array
design in relation to the target species and the research question prior to conducting a study [19,25].
Extensive range testing can also improve knowledge of the detection ranges of receivers and allow the
incorporation of location errors into analyses [26,27].

While our sample size was small (n = 5) and there was high individual variability, our results suggest
that the higher temporal and spatial resolution of acoustic telemetry provided a more detailed
characterization of the movement paths and predicted space use for the individuals in our study [45].
However, satellite occurrence distribution results should be considered with care, as biases may have
been introduced by removing locations over land after the SSM was fit [107]. Although the array
design and species’ behaviour of our target population are highly specific, the results from this study
suggest that acoustic telemetry may be more appropriate for answering fine-scale ecological questions,
such as those related to diel and tidal movement patterns, habitat use within highly heterogeneous
benthic substrate, or use of discrete habitats for specific behaviours (e.g. resting spots) [43,61,108–110].
Acoustic telemetry may also be better suited for studies in constrained water bodies (e.g. bays, lakes,
rivers) or at study sites with complex coastlines where the larger spatial errors associated with satellite
telemetry may produce locations that fall outside the system or over land [107,111]. Additionally,
acoustic telemetry can provide insight into intra- or interspecific interactions when individuals are
detected simultaneously on the same receiver [37,112,113]. Acoustic transmitters are also available in a
range of sizes, some weighing less than 0.5 g, which allows tracking of multiple life stages or species
within the same array and can inform multispecies management [50,62,114].

The ability of satellite telemetry to track individuals over an unlimited spatial extent suggests that
satellite telemetry is better suited for identifying broad-scale movements and migration pathways
[3,93]. Satellite telemetry has captured movements of individuals over thousands of kilometres and
spanning ocean basins [36], something that acoustic telemetry cannot capture with the same level of
detail, even with the growing number of acoustic arrays and data-sharing networks [38,115]. Satellite
telemetry is also advantageous in environments where habitat structures may prevent detections of
acoustic signals (e.g. rocky outcrops) or in areas where receiver deployment and data retrieval is
difficult and costly (e.g. pelagic ocean and remote areas) [26,27,38].



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.11:231152
16

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

10
 J

an
ua

ry
 2

02
4 
Our conclusions on the differences in the applicability of each approach are supported by studies that
have investigated both fine- and broad-scale information of individual behaviours and population-level
space use using both telemetry methods. For example, combining approaches has been used to study
habitat associations of marine turtles within foraging areas while also tracking migrations and movements
of the same individuals away from these foraging grounds [43,45,116]. The use of acoustic telemetry in
addition to satellite tracking has also revealed inter-annual movement and residency patterns of juvenile
white sharks and whale sharks [117,118]. Since acoustic and satellite telemetry are each best suited to
address distinct ecological questions, combining telemetry approaches within the same study can provide
a more complete picture of a species’ spatial ecology than either can provide alone. Using both methods
can provide knowledge to improve conservation efforts; for example, delineating protected areas that
cover habitats used for multiple behavioural phases, such as foraging and migrating [37,116].

When designing a telemetry study, it is important to consider not only the research question at hand,
but also the costs associated with each telemetry method in order to efficiently leverage resources [119].
The installation of an acoustic receiver array is a substantial investment of both time and money [38,39].
An acoustic telemetry study requiring array installation is more expensive than satellite telemetry (Argos
or Fastloc), regardless of the sample size or study duration tested. Additionally, as array density or extent
increases, costs increase as well in regard to not only installation, but maintenance and data retrieval as
well. However, provided that they are regularly maintained, the longevity of acoustic arrays can support
long-term monitoring efforts and multiple tracking endeavours [109]. Since acoustic arrays can
simultaneously track multiple species, this also creates opportunities for resource-sharing among
projects using the same receiver array, which may help to offset some of the costs [109]. However,
when interpreting data from multi-use arrays, it is important to be aware of biases that may have
been introduced if the movement patterns of the target species differ greatly from the species for
which the array was originally designed [109].

Barring installation of an array, there is a trade-off between the high costs of individual satellite
transmitters and the high costs associated with acoustic array maintenance and data retrieval. Data
retrieval is particularly labour-intensive, and costs increase with more remote study sites. At small
sample sizes (n = 1–5), satellite telemetry is less expensive, with acoustic telemetry becoming the less
expensive option as sample size increases beyond that. Because population-level inferences made from
an insufficient sample size could misinform conservation measures, while unnecessarily large sample
sizes may not be an efficient use of resources, appropriate sample sizes should be determined by the
study objectives, movement patterns of the target species, the selected telemetry method, and desired
spatial and temporal scales [40,120].

Comparisons of telemetry methods representing different study sites, designs, and species are
increasingly necessary as developments in tracking technology offer new opportunities for data
collection and lead to increases in the number of studies [14,44]. Collaborative acoustic networks are
expanding globally, enabling detections of individuals over increased spatial scales that support
tracking along migration pathways [38,115]. Additionally, robotic gliding and animal-borne receivers
can now detect individuals in areas where it is difficult to deploy traditional receivers [13,121]. Recent
advances in the attachment methods and miniaturization of satellite transmitters have facilitated
tracking of individuals previously too small to carry transmitters, providing insight into the cryptic
behaviours of neonate turtles [122]. Both acoustic and satellite transmitters can now also be coupled
with a suite of sensors to collect in situ environmental data, physiological parameters, and more
[63,123]. As these developments provide novel ways to elucidate patterns of space use and movement
of marine species, comparisons of telemetry methods (such as this study) provide researchers with a
growing body of knowledge to inform appropriate tracking methods for specific study goals, as well
as to draw appropriate inferences and conclusions from tracking data.
5. Conclusion
Given the rapid advances of biotelemetry devices and increasing use of tracking data, it is important to
acknowledge that the typical use of acoustic and satellite telemetry may not provide similar estimates of
space use for species within foraging areas. This case study provides evidence that each telemetry method
provides a different interpretation of space use of the same individuals. We propose that both the
spatiotemporal structure of the data, as well as limitations and biases associated with acoustic array
design, render each method most ideal for specific purposes. While acoustic telemetry is better suited for
assessing fine-scale habitat use, satellite telemetry is better suited for identifying broad-scale movement
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patterns. This study provides researchers with the information necessary to make an informed decision on
which tracking method is best to address the ecological questions at hand. Additionally, this comparison
provides the context needed for researchers and managers to properly interpret results from telemetry
studies to implement meaningful and successful conservation measures. Using and interpreting telemetry
data in the most appropriate way will allow us to improve our knowledge of animal movement patterns
and space requirements, resulting in well-informed conservation measures [23].
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